Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

X-ray multiple diffraction in Renninger scanning mode : Simulation of data recorded using synchrotron radiation

Identifieur interne : 01A138 ( Main/Repository ); précédent : 01A137; suivant : 01A139

X-ray multiple diffraction in Renninger scanning mode : Simulation of data recorded using synchrotron radiation

Auteurs : RBID : Pascal:96-0424719

Descripteurs français

English descriptors

Abstract

The application limit of the MULTX program for predicting Renninger-scanning X-ray multiple diffraction data is extended in order to simulate Renninger scans for semiconductor single-crystal and heteroepitaxial structures recorded using synchrotron radiation. The experimental synchrotron-radiation Renninger scan for InP(006) bulk material is taken as the standard to analyse the effects of both the polarization factor and diffracted-beam path length. The polarization of the synchrotron-radiation beam is considered using a matrix approach. The diffracted-beam path length involved in the surface secondary beam cases is analysed taking into account the dynamical theory for perfect crystals and the kinematical theory as the limit of the dynamical case for thin crystals. Renninger scans of AlGalnAs quaternary layer structures, simulated with the MULTX program, show a very good agreement (R = 0.085) with the corresponding experimental data.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:96-0424719

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">X-ray multiple diffraction in Renninger scanning mode : Simulation of data recorded using synchrotron radiation</title>
<author>
<name sortKey="Sasaki, J M" uniqKey="Sasaki J">J. M. Sasaki</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IFGW, UNICAMP, CP 6165</s1>
<s2>13083-970, Campinas, SP</s2>
<s3>BRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Brésil</country>
<wicri:noRegion>13083-970, Campinas, SP</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cardoso, L P" uniqKey="Cardoso L">L. P. Cardoso</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IFGW, UNICAMP, CP 6165</s1>
<s2>13083-970, Campinas, SP</s2>
<s3>BRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Brésil</country>
<wicri:noRegion>13083-970, Campinas, SP</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Campos, C" uniqKey="Campos C">C. Campos</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IFGW, UNICAMP, CP 6165</s1>
<s2>13083-970, Campinas, SP</s2>
<s3>BRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Brésil</country>
<wicri:noRegion>13083-970, Campinas, SP</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Roberts, K J" uniqKey="Roberts K">K. J. Roberts</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Centre for Molecular and Interface Engineering, Department of Mechanical and Chemical Engineering, Heriot-Watt University</s1>
<s2>Edinburgh EH14 4AS, Scotland</s2>
<s3>GBR</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Edinburgh EH14 4AS, Scotland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Clark, G F" uniqKey="Clark G">G. F. Clark</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>CCLRC Daresbury Laboratory</s1>
<s2>Warrington WA4 4AD</s2>
<s3>GBR</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>CCLRC Daresbury Laboratory</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pantos, E" uniqKey="Pantos E">E. Pantos</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>CCLRC Daresbury Laboratory</s1>
<s2>Warrington WA4 4AD</s2>
<s3>GBR</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>CCLRC Daresbury Laboratory</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sacilotti, M A" uniqKey="Sacilotti M">M. A. Sacilotti</name>
<affiliation wicri:level="4">
<inist:fA14 i1="04">
<s1>IUT-GMP and LPUB, Université de Bourgogne</s1>
<s2>21004 Dijon</s2>
<s3>FRA</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Bourgogne</region>
<settlement type="city">Dijon</settlement>
</placeName>
<orgName type="university">Université de Bourgogne</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">96-0424719</idno>
<date when="1996">1996</date>
<idno type="stanalyst">PASCAL 96-0424719 INIST</idno>
<idno type="RBID">Pascal:96-0424719</idno>
<idno type="wicri:Area/Main/Corpus">01A823</idno>
<idno type="wicri:Area/Main/Repository">01A138</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0021-8898</idno>
<title level="j" type="abbreviated">J. appl. crystallogr.</title>
<title level="j" type="main">Journal of applied crystallography</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium arsenides</term>
<term>Binary compounds</term>
<term>Computerized simulation</term>
<term>Experimental study</term>
<term>Gallium arsenides</term>
<term>Indium arsenides</term>
<term>Indium phosphides</term>
<term>Layered crystals</term>
<term>Monocrystals</term>
<term>Multiple diffraction</term>
<term>Quaternary compounds</term>
<term>Semiconductor materials</term>
<term>Synchrotron radiation</term>
<term>Theoretical study</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>0785Q</term>
<term>Etude théorique</term>
<term>Simulation ordinateur</term>
<term>Etude expérimentale</term>
<term>Rayonnement synchrotron</term>
<term>XRD</term>
<term>Diffraction multiple</term>
<term>Monocristal</term>
<term>Cristal lamellaire</term>
<term>Matériau semiconducteur</term>
<term>Composé binaire</term>
<term>Indium phosphure</term>
<term>Composé quaternaire</term>
<term>Gallium arséniure</term>
<term>Aluminium arséniure</term>
<term>Indium arséniure</term>
<term>InP</term>
<term>In P</term>
<term>AlGaInAs</term>
<term>Al As Ga In</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The application limit of the MULTX program for predicting Renninger-scanning X-ray multiple diffraction data is extended in order to simulate Renninger scans for semiconductor single-crystal and heteroepitaxial structures recorded using synchrotron radiation. The experimental synchrotron-radiation Renninger scan for InP(006) bulk material is taken as the standard to analyse the effects of both the polarization factor and diffracted-beam path length. The polarization of the synchrotron-radiation beam is considered using a matrix approach. The diffracted-beam path length involved in the surface secondary beam cases is analysed taking into account the dynamical theory for perfect crystals and the kinematical theory as the limit of the dynamical case for thin crystals. Renninger scans of AlGalnAs quaternary layer structures, simulated with the MULTX program, show a very good agreement (R = 0.085) with the corresponding experimental data.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0021-8898</s0>
</fA01>
<fA02 i1="01">
<s0>JACGAR</s0>
</fA02>
<fA03 i2="1">
<s0>J. appl. crystallogr.</s0>
</fA03>
<fA05>
<s2>29</s2>
</fA05>
<fA06>
<s3>p.4</s3>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>X-ray multiple diffraction in Renninger scanning mode : Simulation of data recorded using synchrotron radiation</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SASAKI (J. M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CARDOSO (L. P.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>CAMPOS (C.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ROBERTS (K. J.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>CLARK (G. F.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>PANTOS (E.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>SACILOTTI (M. A.)</s1>
</fA11>
<fA14 i1="01">
<s1>IFGW, UNICAMP, CP 6165</s1>
<s2>13083-970, Campinas, SP</s2>
<s3>BRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Centre for Molecular and Interface Engineering, Department of Mechanical and Chemical Engineering, Heriot-Watt University</s1>
<s2>Edinburgh EH14 4AS, Scotland</s2>
<s3>GBR</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>CCLRC Daresbury Laboratory</s1>
<s2>Warrington WA4 4AD</s2>
<s3>GBR</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>IUT-GMP and LPUB, Université de Bourgogne</s1>
<s2>21004 Dijon</s2>
<s3>FRA</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s1>325-330</s1>
</fA20>
<fA21>
<s1>1996</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13882</s2>
<s5>354000064124400030</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 1996 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>17 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>96-0424719</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>PR</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of applied crystallography</s0>
</fA64>
<fA66 i1="01">
<s0>DNK</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The application limit of the MULTX program for predicting Renninger-scanning X-ray multiple diffraction data is extended in order to simulate Renninger scans for semiconductor single-crystal and heteroepitaxial structures recorded using synchrotron radiation. The experimental synchrotron-radiation Renninger scan for InP(006) bulk material is taken as the standard to analyse the effects of both the polarization factor and diffracted-beam path length. The polarization of the synchrotron-radiation beam is considered using a matrix approach. The diffracted-beam path length involved in the surface secondary beam cases is analysed taking into account the dynamical theory for perfect crystals and the kinematical theory as the limit of the dynamical case for thin crystals. Renninger scans of AlGalnAs quaternary layer structures, simulated with the MULTX program, show a very good agreement (R = 0.085) with the corresponding experimental data.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00G85Q</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>0785Q</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Etude théorique</s0>
<s5>45</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Theoretical study</s0>
<s5>45</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Simulation ordinateur</s0>
<s5>46</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Computerized simulation</s0>
<s5>46</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>47</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>47</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Rayonnement synchrotron</s0>
<s5>48</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Synchrotron radiation</s0>
<s5>48</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>XRD</s0>
<s5>49</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>XRD</s0>
<s5>49</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Diffraction multiple</s0>
<s5>50</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Multiple diffraction</s0>
<s5>50</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Difracción múltiple</s0>
<s5>50</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Monocristal</s0>
<s5>51</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Monocrystals</s0>
<s5>51</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Cristal lamellaire</s0>
<s5>53</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Layered crystals</s0>
<s5>53</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Matériau semiconducteur</s0>
<s5>54</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>54</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Composé binaire</s0>
<s5>55</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Binary compounds</s0>
<s5>55</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Indium phosphure</s0>
<s2>NK</s2>
<s5>56</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Indium phosphides</s0>
<s2>NK</s2>
<s5>56</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Composé quaternaire</s0>
<s5>57</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Quaternary compounds</s0>
<s5>57</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
<s5>58</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>58</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Aluminium arséniure</s0>
<s2>NK</s2>
<s5>59</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Aluminium arsenides</s0>
<s2>NK</s2>
<s5>59</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Indium arséniure</s0>
<s2>NK</s2>
<s5>60</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>60</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>InP</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>In P</s0>
<s4>INC</s4>
<s5>85</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>AlGaInAs</s0>
<s4>INC</s4>
<s5>86</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Al As Ga In</s0>
<s4>INC</s4>
<s5>87</s5>
</fC03>
<fN21>
<s1>295</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 01A138 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 01A138 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:96-0424719
   |texte=   X-ray multiple diffraction in Renninger scanning mode : Simulation of data recorded using synchrotron radiation
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024